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1. INTRODUCTION 

A description of solute dispersion in pipe flow is provided by the solution to the convective diffusion 
equation. The solution to the convective diffusion problem presented herein is an application of 
work by Maron (1978). We present a solution to Maron's approximate equation by application 
of the Laplace transform with respect to time. Laplace and Fourier transforms have previously been 
applied to the advection diffusion equation for Poiseuille flow by Stokes & Barton (1985). They 
accomplished transform inversion by asymptotic evaluation of the poles to get approximate 
solutions near the leading and trailing fronts. Here we evaluate the inversion integral numerically. 

The fluid can be a gas or liquid on laminar flow. We refer to the diffusing material as solute, 
though it could be an atomic, molecular or nuclear excited species of the bulk fluid. The solute 
concentration is described for aH times after injection and Maron's formalism allows for 
nonuniform solute injection and generalized velocity profiles. The concentration of solute at any 
time and position in the pipe is given in terms of an expansion about the mean concentration at 
any time and longitudinal position. Expansion coefficients are determined from the initial solute 
distribution and fluid velocity profile. 

Consider a pipe of constant circular cross section whose axis is the z-axis of the (r, 0, z) 
cylindrical coordinate system. The local concentration of solute in the system is described by the 
convective diffusion equation with constant molecular diffusion coefficient D: 

OC' OC' I ( ~C'~ 02C"  02C'-I C" 
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ot +uO"°)W ' = T½' [1] 

where C'(t, r, O, z) is the local solute concentration, U(r, O) is the magnitude of the z-directed 
rectilinear flow velocity and T½ is the half-life of a radioactively decaying solute. The substitution 
C'= C exp(-t/T½) is used to obtain an equation of the form of [1] for C but with the r.h.s, equal 
to zero. A coordinate system fixed in the frame of the pipe is used with the dimensionless variables 
q = r/R, ~ = z/R, z ffi Dt/R 2 and the dimensionless parameter Y = UoR/D (the Peclet number, 
Pe--2Y). Here R is the pipe radius and U0 is the mean velocity of the flow with a local 
dimensionless profile given by Y¢(q, 0). Defining the cross-sectional mean 

Maron obtained 

- C(z, r/, O, ~)~ dq dO, [2] 
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where 

and 
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f2n II 
a,.,, = [q~(r/, 0) - 1]Z,.,, (r/, O)r/dq dO, 

do dO 

UOam(¢) = C(O, r/, O, ~)L..(r/, O)r/ dr/ dO 
do do 

[4] 

[5] 

f2n I1 N'm = 2 ,~.r/, dr/dO, [6] 
do dO 

with Z~. = cos(~0)J~(2~.~), where J~ is the 7-order Bessel function of  the first kind and 2y. is the 
nt.h zero of  its first derivative. Maron gives the local solute concentration as 

= y,  5-" u~.(¢)  
~ o 
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2. S O L U T I O N  

The solution to [3] represents the axial and temporal dependence of  the cross-sectional mean 
solute concentration. This result, with the at. s from the velocity profile and the u°. s obtained from 
the initial solute distribution, can be used in [7] to obtain the complete spacial and temporal 
dependence of  the solute concentration at any downstream station. 

The solution to [3] is obtained by performing the indicated differentiation of  the last term and 
taking the Laplace transform with respect to z to get 

OZG(P' ¢) OC°(¢) [8] 
pG(p, ~) - Co(l) + yOG(~, ~) = K(p) O~ 2 L(p)  O-----~' 

where 

G(p, ~) = C(r, ¢)exp(pz) dr, [9a] 

K(p) = 1 + -  a~. 
.= l  ~=oU~.(p  + , ~ . )  ' 

[9b] 

and 

y ~ ~ a'mArn 
= ,,= o N,.(P + 2-e.) 

[9c] 

u°.(~) = A~. Co(~). [9d] 

Co (~) is the ~ dependence of  the initial solute distribution and it has been assumed the ¢ dependence 
of  C(0, r/, 0, ~) is separable from H(r/, 0), the initial r/and 0 dependence, in writing [9d]. Using [5] 
and [9d], one obtains 

A,.  = H(r/, 0)Z,.(r/, 0),7 dr/dO. [101 
do do 
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The solution of [8] by variation of parameters can be put in the form 

where 

[1 - L(p)M+ (p)]exp[M+ (p)~] I ~ Co (¢ ,)exp[ _ M+ (p)¢,] dU, G(p, 
J¢ 

[1 - L(p)M_ (p)]exptM_ (p)¢] f~: Co(¢,)exp[_M_ (p)¢,] d~', 
~ K(p)  [M+ (p) - M_ (p)] J_ 

[11] 

[ y2 + 4pK(p)~ 
M± (p) = Y 5_ 

2K(p) 

For a slug of solute of mean concentration Co which initially extends from -~s/2 to +~,/2, one 
obtains 

[ "]t ~ ( 1 - M _ ( p ) L ~ )  ) [2 s inh  M_(p)- f f  exp[M_(p)~l. [12] 

The inversion of [12] then finally gives the Bromwich integral: 

1 - - M : ( p ) L ( p )  ~ J 2 s i n h _ M _ ( p ) ~ .  exp[M_(p)~ +p t ]dp .  [13] 

To facilitate the numerical integration of the real integral in [13] define p = a + iy, ql = K(p),  
q2 = y2 + 4K(p)p, q3 = L(p)  and q4 = [sinh(M_ ~,/2)]/(M_ ~/2). Then using qj = rj(cos 0j + i sin 0j) 
the real part of [13] can be put in the form 

f_~ exp[~c2(y)]{cl(y)cos[~s2(y) + ty - 04] + sl (y)sin[~s2(y) - ty - 04]} dy, exp(at) 
do 

[14a] 

where 

and 

c,<, _ F+cos(O q ;Yr; cos{° 
s , (Y , - -L_s in \ -2] - -~ - -~ l  ) s in~v3- -Ot - -~)+(~ tr2) : °Sn(O3- -Ol ' ] (~zr~r2 ,  [14b] 

s2(Y) = sin sin 2 - 0 1  • 
[14c] 

For the limiting case of a pulse input, ~s--,0, which gives r 4 = 1 and 0, = 0 in [14a,b]. The 
computational procedure is to obtain the a,m from [4] for a given flow profile, and the Arn from 
[10] for the input slug's given radial and angular distribution. Using these results in [9b] and [9c] 
we obtain expressions for the rjs and 0is which appear in [14a--c]. The numerical integration of [14a] 
can then be carried out. 

3. RESULTS 

The numerical results reported here are for solute dispersion in pipe flow with a steady parabolic 
fluid velocity profile for which [4] reduces to 

8n 
ao. = - -~o Jo ( 2on ) 

a~n=O, ? > 0 .  
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Figure 1. Cross-sectional mean temporal distribution of solute for Pe = 10. Initial conditions: ~s = 0.24 
and r/0 = 1.0. O, present results; F-l, computed from [34]-[36] of Gill & Sankarasubramanian (1971); , 
numerical computation of Gill & Ananthakrishnan (1967). Axial stations: (a) ~ = 0.5; (b) ~ = 2.5; 

(c) ~ = 8.0. 

The cases reported are chosen for comparison with results reported in the literature. The initial 
solute distribution is uniform over the dimensionless pipe length ~ centered at ¢ = 0 and extends 
out to various dimensionless radii r/0 from 0.1 to 1.0. Numerical integrations are carried out using 
5 terms in the summations in [9b] and [9c]. Extending the summation to 10 terms affects the 
reported results by <0 .5%,  except in the wings of  the distribution in the r/0 = 0.1 case, for which 
the difference between 5 and 10 terms in the summations changed the results by up to 5%. 

In figure 1 the mean concentration is displayed as a function of  dimensionless time for an initially 
uniform solute distribution of unit concentration extending to the pipe wall a t  r/o = 1.0 and of 
dimensionless length 0.24. Results are given for three detection stations located at dimensionless 
distances 0.5, 2.5 and 8.0. This choice of  parameters  allows comparison with the finite-difference 
calculations of  Gill & Ananthakrishnan (1967). We also report points calculated using [34]-[36] of  
Gill & Sankarasubramanian (1971). There is general agreement between all three sets of  results for 
this range of parameters.  
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Figure 2. Cross-sectional mean temporal distribution of solute for Pe = 2 at two axial stations. O,  present 
results; computed from [34]-[36] of Gill & Sankarasubramanian (1971). Initial conditions: ¢s--0.25; 

and (a) 70 = 0. l, (b) r/0 = 0.5, (c) 70 = 1.0. 

A more extensive comparison with the work of Gill & Sankarasubramanian (1971) is presented 
in figure 2, where the initially uniform solute distribution extends over a dimensionless length of 
0.25 and out to dimensionless radii r/0 = 0.1, 0.5 and 1.0. Two detection stations, one at ~ = 0.5 
and one at ~ = 2.0, are considered. Here there is excellent agreement between the present method 
and Gill & Sankarasubramanian (1971). The curves in figure 2 for the two detection stations are 
almost independent of  the dimensionless radius of the initial solute distribution. This is due to the 
low Pe and the normalization of the detected mean concentration to the initial mean concentration 
[Co = C(0)]. In Gill & Sankarasubramanian (1971, figure 7) a plot is given of C(z, ~ = 200) for 
~/0 = 1.0, 0.9, 0.7, 0.5 and 0.3 with Pe = 1000. If  these curves are normalized to Co they have, within 
a few percent, the same peak value. Their peak positions in time are offset slightly with the initial 
distributions concentrated closest to the axis arriving first, This offset is not resolvable in the present 
case due to the low Pc. 

4.  C O N C L U S I O N S  

The numerical integration of [14a] yields the cross-sectional average solute concentration at a 
dimensionless distance ~ downstream of the injection point at a dimensionless time T. For low Pc, 
agreement with other work is demonstrated. The main advantage of the present method is the way 
in which the initial solute distribution enters the problem. The initial radial and angular distribution 
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can be quite general, requiring only that the r and 0 dependence is separable from the z dependence. 
Then the Ay, s can be computed from the integrals in [10]. The initial longitudinal distribution of 
solute used here applies only to the case of a slug or pulse input, however other longitudinal 
distributions could be introduced in the integral in [11]. 

One of the referees pointed out that Maron's equation could be applied to larger Pe if a moving 
frame of reference were adopted and the transform method of solution could still be used. 
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